BS 7608:2014 # Guide to fatigue design and assessment of steel products Cert no. SW-COC-004238 www.fsc.org © 1996 Forest Stewardship Council ## Publishing and copyright information The BSI copyright notice displayed in this document indicates when the document was last issued. © The British Standards Institution 2014 Published by BSI Standards Limited 2014 ISBN 978 0 580 54090 5 ICS 91.080.10 The following BSI references relate to the work on this document: Committee reference WEE/37 Draft for comment 13/30102062 DC ### **Publication history** First edition April 1993 Second (present) edition March 2014 # Amendments issued since publication Date Text affected # **Contents** | Foreword iv | |---| | Scope 1 Normative references 2 Terms and definitions 3 Symbols and units 6 Fatigue assessment procedure 8 Design life 9 Fatigue loading 9 Environmental considerations 10 Factors on fatigue life 11 Features influencing fatigue behaviour 11 Fracture mechanics 12 Classification of details 12 Unclassified details 32 Workmanship and Inspection 32 Stress calculations 42 Allowable fatigue stresses 53 | | Annexes | | Annex A (normative) Fatigue design 68 Annex B (normative) Explanatory notes on detail classification 70 Annex C (normative) Guidance on stress analysis 82 Annex D (normative) Guidance on the use of fracture mechanics 107 Annex E (normative) Fatigue testing and the use of test data to define design stresses 116 Annex F (normative) Weld toe improvement techniques 119 Annex G (normative) Assessment of tubular node joints 130 Annex H (normative) Cycle counting by the reservoir method 136 | | Bibliography 138 | | List of figures Figure 1 – Definition of length <i>L</i> for use in thickness-bending correction 8 Figure 2 – Reference stress in parent metal 43 Figure 3 – Reference stress on weld throat 45 Figure 4 – Typical example of stress concentrations due to geometrical discontinuity 47 Figure 5 – Typical example of stress concentration caused by a geometric hard spot 48 | | Figure 6 – Fatigue stress concentration factors 49
Figure 7 – Comparison of nominal, structural and hot-spot stresses in a beam with a welded cover plate 50
Figure 8 – Relative stiffness effects on the fluctuating load in a bolt in a concentrically clamped and concentrically loaded bolted joint 52
Figure 9 – Mean S_r - N curves 54 | | Figure 10 – Standard basic design S_r - N curves 56
Figure 11 – S_r - N curves for bolts with threads under direct loading (class X) 58
Figure 12 – Modifications made to S_r - N curves for welded joints in sea water 6 .
Figure 13 – Typical S_r - N relationship 65
Figure B.1 – Welds at plate edges 71 | | Figure B.2 – Failure modes at weld ends and weld toes of welded | | attachments 72 | | Figure B.3 – Failure modes in cruciform and T-joints for joint types indicated 73 Figure B.4 – Failure modes in transverse butt welds for joint types indicated 73 Figure B.5 – T-junction of two flange plates 75 Figure B.6 – Cruciform junction between flange plates 76 | | Figure B.6 – Cruciform junction between flange plates 76 Figure B.7 – Alternative method for joining two flange plates 76 | | Figure B.7 – Alternative method for joining two flange plates 76 Figure B.8 – Local grinding adjacent to cope hole in type 6.2 joint 77 |